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We shall briefly review the current approach to regualtory environ-

mental heath risk analysis, focusing on the context of pesticides. We

then offer a fundamental criticism of this approach, propose an alterna-

tive general approach based on Monte-Carlo simulation, and provide an

example of its application in the area of cancer risk analysis for a

pesticide groundwater contaminant.

1. The Regulatory Context

Regulatory risk analysis generally begins with an assessment of the

extent to which certain population groups are exposed to a compound

determined to have adverse health effects at some dose level. In the

context of pesticide risk assessment in the context of EPA's "Rebuttable

Presumption Against Registration" (RPAR) procedure, the general approach

used involves a mixture of "averaging" and "worst-case" exposure

descriptions, although operational definitions for these terms are

rarely provided. For example, in setting chlorobenzilate residue toler-

ances the following were used: average crop consumption estimates, aver-

aged dispersion estimates which assume that an entire projected pesti-
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cide residue mass is distributed evenly throughout the entire U.S. crop

to which the pesticide is applied, and "reasonable upper limit" occupa-

tional exposure estimates based on maxima of several sets of exposure

measurement means (EPA, 1980a). In reviewing EPA's exposure assessment

approach, a National Academy of Sciences committee concluded: "At

present the position documents and supporting reports almost invariably

violate [the principle of presenting unbiased exposure analyses]. Indi-

cations of ranges of uncertainty are rare . . . [and] generally present as

estimates of exposure the single, upper-limit, 'worst case' values for

each exposed group" (NAS, 1980).

For chronic toxicity endpoints other than oncogenesis and mutation,

RPAR dose-response assessments are most often based on experimentally

derived "No Observed Effect Levels (NOELs). It is assumed that for

these endpoints the absence of any observed toxic response in a group of

experimental animals at a given dose level indicates that no such

response would have occurred even if the exposed group of animals were

much larger than that actually used. That is, the assumption is made

that there is a threshold in the dose-response relationship for that

effect. Test results for at least two animal species are generally

required to make a NOEL determination (EPA, 1982a). Human epidemiologi-

cal data can also be used for this purpose, and positive human epi-

demiological findings will generally outweigh negative experimental test

results. In the context of regulating environmental pesticide exposure

levels, a "Maximum permissible exposure level" (MPI) for humans is

derived from an experimental NOEL by dividing by standard weight (e.g.,

70 kg) and by an appropriate safety factor (EPA, 1978). The safety fac-

tor is usually 100 but may be raised by a factor of from two to ten or
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more in cases where there is very little toxicological data upon which

to base a risk analysis. (E.g., in the context of regulating drinking

water contamination, EPA sets ADIs using safety factors of 10, 100, or

1000 depending on the quality and quantity of available toxicological

data in accordance with

tions (NAS, 1978).)

recent National Academy of Sciences recommenda-

In practice, an MPI in an RPAR risk determination is combined with

a "worst case" public or occupational exposure assessment to yield a

corresponding "margin of safey" (MOS) defined as:

MOS =
MPI

(Proposed Exposure Level) '

The MOS serves as a rough guide to exposure acceptability for the regu-

latory decisionmaker. For example, a MOS less than 1 generally is

regarded as unacceptable, whereas a MOS between 1 and 50 may indicate

that alternative regulatory strategies should be considered which might

act to lessen prospective exposures.

Dose-response assessment in the context of regulating exposure to

tumor-causing agents has been far more controversial than that for other

types Of toxic response. EPA dose-response assessments for carcinogeni-

city have been based on the position that in a variety of regulatory

contexts a "linear non-threshold" model is the mathematical model of

choice for extrapolation of cancer risk at very low dose levels (EPA,

1976; EPA, 1979a; IRLG, 1979; EPA, 1980b; EPA, 1980c). A similar posi-

tion is currently developing in regard to low-dose mutagenicity risk

extrapolation (EPA, 1980d; NAS 1982). In the context of risk assessment

for chemically induced tumors (in RPAR and other regulatory proceed-

ings), the specific linear model used by EPA (Cancer Risk Assessment
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Group, Office of Health and Environmental Assessment) is the "linearized

multistage" model (Crump, 1981). This model treats lifetime increased

cancer risk as the following function of dose:

and where qi > 0, k < the number of experimental dose groups, and d =

dose. Maximum likelihood procedures to estimate multistage parameters

from dichotomous tumor response data have been developed (Guess and

Crump, 1976, 1978a, 1978b; Guess et al., 1977; Crump et al., 1977;

Crump, 1981). Using these procedures, maximum likelihood estimates of

qi are obtained and then a 95% upper confidence limit of q, is calcu-

lated (= (1 consistent with ej, j = 2,3,...,k. Increased low dose

cancer risk is then calculated by the formula

intended to represent "the most plausible upper limit" of the additional

risk (Anderson, 1977; EPA, 1980c).

The point of the "linearized multistage" model, then, is to calcu-

late a "maximum plausible" risk rather than a "most likley" risk. Max-

imum likelihood risk estimate's based on the "linearized multistage"

model can be many orders of magnitude lower than those produced by the

simpler one-hit model, depending on the nature of the data analyzed.

However, 95% upper confidence risk estimates base on these two models

will rarely differ by as much as an order of magnitude regardless of the

underlying data (Crump, 1981). This is so because ?j, is always allowed
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to be equal to zero in this model, whereas its calculated upper confi-

dence limit ST will always be greater than zero and generate a linear

term that predominates at low doses. radiation in many contexts.

The exposure and dose-response assessment methodologies discussed

which are currently used in the RPAR risk analysis process suffer from a

failure to incorporate any explicit consideration of uncertainty in the

dose-response relationship that is selected for use in a final risk

analysis. For the first class of toxic endpoints discussed, the response

of interest is zero-response, for which the corresponding highest dose

is extrapolated by dividing a no-observed effect level by a safety fac-

tor without regard to the statistical reliability of the NOEL. The use

of generic safety factors itself precludes the explicit treatment of

uncertainty in dose-response asssessment. The low-dose cancer risk

extrapolation model used by EPA for pesticide and other chemical carci-

nogens or suspected carcinogens is explicitly designed to yield a "plau-

sible worst case" dose-response relationship, despite the fact that the

underlying "linearized multistage" model is quite capable of generating

maximum likelihood functions and plausible representations of their

associated uncertainty given the variability in the experimental tumor

response data used to derive those functions. Although ranges of uncer-

tainty may be included in exposure assessments, there is currently no

formal incorporation of this information into risk analysis and subse-

quent decision-making procedures.

2. A Monte-Carlo Approach

We propose that all information regarding uncertainty or variabil-
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ity in variables that feed into a risk aanalysis be explicity included

in the formal analysis in a way that yields the best characterization

possible of true "risk", i.e., in a way that produces a probabilistic

assessment of forseeable harm. In the context of a pesticide risk

analysis, a traditional risk assessment framework considers the various

pathways which a given chemical can be transmitted through the environ-

ment resulting in human exposure, i.e., absorption at the principle body

barriers such as lung, skin, or gut. The exposure process is controlled

by the level at which a relevent environment is contaminated (c) and the

absorption rate (a), which together determine the dose rate, whcih in

turn, when properly integrated over time, yields the dose (d) to a given

population. A dose-response relationship P(d) then determines the

expected response conditional on the assumptions use to generate c, a,

d, and P(d).

We would replace the above deterministic model with an analogous

one which explicitly incorporates either random variability or a priori

uncertainty or both. In particular, the variables above can be treated

as non-negative random variables C, A, and D and P(d) can be treated as

a stochastic function of a random variable to generate a treatment of

risk itself as a random variable, i.e., to generate a likelihood distri-

bution of levels of harm that characterize a given environmental risk.

The steps involved in combining the inputs to get a response distribu-

tion is depicted in Figure 1, which expresses the following equations:

D = CA

FD(d) = $ ,?fC(c) fA(a) dc da
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R = P(D)

where F and f are the cumulative distribution and probability density

functions, respectively, of their subscripted variables and where P(d)

is understood to be itself a function with uncertainty in its parameter

set H. The analytic form of a "risk distribution" (more precisely, a

probability density function for the magnitude of anticipated adverse

health impact) can be quite intractable in this context, depending on

the complexity of fC(c),fA(a), and fH(h). For example, if C and A could

both be modeled as log-normal variables, then D would also be log-

normal. Assume further that P(d) were a "one-hit" function, i.e., the

simplest type of multistage model having only a linear parameter, and

that this parameter, say Q, could also follows a log-normal distribu-

tion. It follows that

where T is also a log-normally distributed variable.

In this case, we derive FR(r) as follows:

where m and s are the logarithms of T's geometric. mean and standard

deviation, respectively. Thus, in this case fR(r) is a simple transform

of a log-normal density function.

In general, such derivations would not be so straightforward. We
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have therefore employed a Monte-Carlo approach to the derivation of

FR(r), the cumulative distribution of risk to a given population. Once

again, a point on Fr indicates that the corresponding level of harm or a

lesser level is anticipated to occur with the corresponding likelihood,

given the variability and/or a priori uncertainty associated with the

random inputs, and as such can represent either a population risk (a

probability that a given fraction of a population will be affected) or

an individual risk (a probability of facing a given probability of

harm). If N is the size of a large exposed population, the number of

induced cases N1 would be less than or equal to N times r, with proba-

bility FR(r,). The mathematical expectation of N, is simply N times the

mean value of R. Thus, the distribution FR(r) allows one to make proba-

bility statements about either the size or the proportion of an exposed

population which will respond.

In using the methodology described , care must be taken to delineate

what portion of a derived FR(r) is due to parametric variability

expected to be encountered "in the field" and what portion is due to a

priori uncertainties incorporated into the analysis to reflect fundamen-

tal gaps in knowledge concerning the causal links between contamination,

exposure and toxic response. These two sources of uncertainty can have

very different implications to industrial or regulatory policy-makers

for whom such an analysis would be carried out. Of course, the final

risk distribution generated will reflect reality only to the degree that

(a) the processes involved have been modeled accurately and (b) their

stochasticity and uncertainties have been reasonably accounted for. The

advantage of the approach, however, is that it allows the analyst to

explicitly consider uncertainty in the health risks considered to the
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extent feasible, in a way that can reflect both natural variabilities in

contamination, exposure and response and the uncertainties reasonbly

implied by the use of basic inference bridges intrinsic to most health

risk assessment, particularly regarding chronic health risks like those

posed by environmental carcinogens.

3. Illustrative Application: Reappraisal of DBCP Cancer Risk

We have applied the described Monte-Carlo approach to a reassess-

ment of cancer risk posed by the nematocide dibromochloropropane (DBCP)

found in groundwater in Fresno County, California. DBCP was a popular

and effective chemical used to control nematodes on a variety of impor-

tant crops in the United States. In 1977 DBCP was implicated in the

generation of adverse reproductive effects in male pesticide workers,

and was subsequently banned for most agricultrual uses in the United

States. DBCP was found to be carcinogenic in mice and rats in several

studies conducted between 1972 and 1979. In this context, a water sam-

pling program for the detection of DBCP contamination in the San Joaquin

Valley and Southern California was initiated in 1979 and carried out

over several years by the Water Hygiene group of the California Depart-

ment of Health Services. In this survey all significant water sources

serving the Fresno County population were assessed as it became apparent

that many wells in this county were contaminated to some degree. This

contamination data was used by Jackson et al. (1982) to perform an epi-

demiological comparison of DBCP drinking water contamination with mor-

tality rates from selected cancers for that county between 1970 and

1979, a study which detected positive associations between cancer

incidence and DBCP contamination level, particularly for stomach cancer
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in males.

To obtain a comprehensive map of DBCP contamination of Fresno

County drinking water, Jackson et al. combined DBCP contamination data

from large and small water systems with information on annual flow rates

in an algorithm to obtain a weighted average DBCP concentration value

for each of 108 (1974/1980) census tracts in the county. In this study,

however, census tracts were aggregated into only three DBCP exposure

level categories: LOW (0-0.05 ppb), MEDIUM (0.05-1.0 ppb), and HIGH (>

1.0 ppb). For our purposes it was desirable to reconstruct the entire

distribution of DBCP concentration levels for all census tracts, which

was possible through the gracious supply of the original analysis by Dr.

Jackson, who used 1974 mid-census population figures. This resulted in

an empirical concentration distribution function with 33 concentration

categories ranging from 0.001 ppb (the original <0.005 ppb category was

assigned the midpoint value 0.0025 ppb) to 8.4 ppb (mean = 0.792 ppb,

s.d. = 1.65 ppb, median = 0.119 ppb, 95th %ile = 5.32 ppb, geom. mean =

0.0669 ppb, geom. s.d. = 15.66). Fresno County included 514,621 people

as of the 1980 census, which differed little in total or by census tract

from the 1974 mid-census figures.

In our analysis it is assumed, as in the Jackson et al. study, that

the empirical contamination distribution derived reflects persistent

concentration levels, although for our purposes it is only necessary

that the distribution itself be persistent, rather than its geographic

fixture. In the face of such a broad distribution of contamination, it

was apparent that minor fluctuations in water consumption would have

little effect on response. The standard assumption was made that water
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intake averages 2 liters per 70 kg per day for the Fresno population,

but that average consumption does vary log-normally such that 95% of the

people drink between Multiplying concentration (in ppb = ug/liter) by

weight-standardized intake (in liters/kg/day) yields a dose rate (in mg

DBCP/kg/day). Dermal absorption of DBCP, e.g., during bathing, was not

considered in this analysis.

For the purpose of this illustrative analysis the dose-response

relationship for DBCP-induced tumorigenesis was assumed to follow a

"one-hit" model, in accordance with the re-evaluation of DBCP carcino-

genicity undertaken by EPA's Carcinogen Assessment Group (EPA, 1979b).

The data selected to form the basis of the low-dose risk extrapolation

were those from Hazelton, 1978, on DBCP-induced stomach, liver and kyd-

ney tumors in male rats. (This by itself constitutes a significant bias

in that this was the most sensitive animal sex and species identified

for DBCP's carcinogenic effect.) As in that analysis, the single most

effective dose level was selected to generate a "best fit" (in this case

"only fit") one-hit slope parameter (with units of risk/(mg/kg/day)) for

each tumor type. EPA's 95% upper confidence slope parameter values were

then used to derive reasonable forms of uncertainty in the slope parame-

ters. Here two approaches were taken. The first approach was to assume

that these parameters follow a 0-truncated normal distribution, with

mean parameter equal to the best-fit value, in accordance with the

theoretical expectation that the random variability in the linear param-

eter, which is constrained to be positive, asymptotically approaches

normality when it can be assumed apriori to be different from 0 (Crump

et al., 1977). This approach was used to derive results depicted in

Figures 2-6. The second approach was to assume that the linear
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parameter follows a log-normal distribution, with median equal to the

best-fit value. This appraoch was used to derive the results shown in

Figure 7, where "P(d)" is referred to now as Q(d) to emphasize the

difference in approach. We note that when the full "linearized multis-

tage" procedure is used to generate risk extrapolations, an attractive

way to model the uncertainty in the linear term (which will, in fact,

dominate the variability in the function P(d)) is to use the non-

linearly transformed Chi-square distribution implied by the associated

method used to generate confidence limits on risks and "safe" doses,

namely

where L is the likelihood function of P(d) described by Crump (1981) and

a is the one-tailed significance level associated with ql, the recalcu-

lated linear parameter in P(d). We also note that in the assessment

Cited, the Carcinogen Assessment Group added together its upper 95% con-

fidence levels, which is clearly inappropriate, (A reevaluation of DBCP

carcinogenicity has just been completed by CAG, we understand.)

The results of our reappraisal of DBCP cancer risk using a Monte-

Carlo approach are presented in Figures 2-7. Figures 2 and 7 reflect

all uncertainty sources considered, as discussed above. In Figures 3-6,

we have "filtered" various uncertainty sources to demonstrate their

impact on total uncertainty. Note that the term "uncertainty" in the

figures is meant to refer to both random variability and a priori uncer-

tainty. In the present case, the variables C and A represent emprirical

(in the case of A, semi-empirical) variability, whereas the selection of

the analytic form of P(d) and the form of its stochasticity entails a
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large degree of a priori uncertainty. But there is no reason why a rea-

sonable representation of the latter uncertainty might not also be

included in the analysis if it were felt that reliance on, e.g., only

one low-dose extrapolation model is excessively unrealistic or scientif-

ically unsound. A comparative appraisal of DBCP cancer risk prepared

recently by Shell Oil Company appears to be in this vein (Shell, 1983).

However, the Shell report presents only maximum likelihood risk values

associated with DBCP exposure according to five different low-dose

extrapolation models, and geometric means of these maximum likelihood

values; they made no attempt to extend their analysis to the range of

other uncertainties involved.

A summary of the results presented in Figures 2-7 appears in Figure

8. We feel that Figure 8 illustrates a way to present the output of

Monte-Carlo risk analyses such as this which is readily communicable and

useful to the regulatory decisionmaker as a summary of the technical

appraisal of a given health risk and its associated uncertainty. The

precise results can also be used for more in-depth policy analysis which

would incorporate economic and other considerations bearing on risk

management issues. In summary, we note a key feature of the DBCP risk

analysis undertaken. The contamination distribution clearly dominates

the variability present in the derived FP(r). This is to be expected

since its 95% range spans close to 4 orders of magnitude--well above

that for the absorption and dose-response variables. The skewness of

the contamination distribution has a pronounced effect on the mean risk

level, which is a clear demonstration that including uncertainty in risk

analysis can significantly affect the analytic outcome even with respect

to the simplest desriptors. This is intuitive on recalling that skewed
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distributions (such as log-normal ditributions) become even more skewed

when multiplied together , as we have done in this example, and that the

greater the right-skewness a distribution has, the greater is the

difference between its mean and median values.



Figure 1: COMPONENTS OF PROBABILISTIC RISK ANALYSIS



Figure 2: UNCERTAINTY IN c, a, and P(d)



Figure 3: UNCERTAINTY IN a and P(d)



Figure 4: UNCERTAINTY IN c and P(d)



Figure 5: UNCERTAINTY IN c and a



Figure 6: UNCERTAINTY IN P(d)



Figure 7: UNCERTAINTY IN c, a, and Q(d)



Figure 8: DBCP CANCER RISK UNCERTAINTY:
COMPARATIVE ANALYSIS
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